Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experts' View on Challenges and Needs for Fairness in Artificial Intelligence for Education (2207.01490v1)

Published 23 Jun 2022 in cs.CY and cs.AI

Abstract: In recent years, there has been a stimulating discussion on how AI can support the science and engineering of intelligent educational applications. Many studies in the field are proposing actionable data mining pipelines and machine-learning models driven by learning-related data. The potential of these pipelines and models to amplify unfairness for certain categories of students is however receiving increasing attention. If AI applications are to have a positive impact on education, it is crucial that their design considers fairness at every step. Through anonymous surveys and interviews with experts (researchers and practitioners) who have published their research at top-tier educational conferences in the last year, we conducted the first expert-driven systematic investigation on the challenges and needs for addressing fairness throughout the development of educational systems based on AI. We identified common and diverging views about the challenges and the needs faced by educational technologies experts in practice, that lead the community to have a clear understanding on the main questions raising doubts in this topic. Based on these findings, we highlighted directions that will facilitate the ongoing research towards fairer AI for education.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gianni Fenu (29 papers)
  2. Roberta Galici (2 papers)
  3. Mirko Marras (38 papers)
Citations (17)