Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Turán inequalities for the broken $k$-diamond partition function (2206.09512v1)

Published 20 Jun 2022 in math.CO and math.NT

Abstract: We obtain an asymptotic formula for Andrews and Paule's broken $k$-diamond partition function $\Delta_k(n)$ where $k=1$ or $2$. Based on this asymptotic formula, we derive that $\Delta_k(n)$ satisfies the order $d$ Tur\'an inequalities for $d\geq 1$ and for sufficiently large $n$ when $k=1$ and $ 2$ by using a general result of Griffin, Ono, Rolen and Zagier. We also show that Andrews and Paule's broken $k$-diamond partition function $\Delta_k(n)$ is log-concave for $n\geq 1$ when $k=1$ and $2$. This leads to $\Delta_k(a)\Delta_k(b)\ge\Delta_k(a+b)$ for $a,b\ge 1$ when $k=1$ and $ 2$.

Summary

We haven't generated a summary for this paper yet.