Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bounding Evidence and Estimating Log-Likelihood in VAE

Published 19 Jun 2022 in cs.LG, cs.AI, and stat.ML | (2206.09453v2)

Abstract: Many crucial problems in deep learning and statistical inference are caused by a variational gap, i.e., a difference between model evidence (log-likelihood) and evidence lower bound (ELBO). In particular, in a classical VAE setting that involves training via an ELBO cost function, it is difficult to provide a robust comparison of the effects of training between models, since we do not know a log-likelihood of data (but only its lower bound). In this paper, to deal with this problem, we introduce a general and effective upper bound, which allows us to efficiently approximate the evidence of data. We provide extensive theoretical and experimental studies of our approach, including its comparison to the other state-of-the-art upper bounds, as well as its application as a tool for the evaluation of models that were trained on various lower bounds.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.