Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation vs. Equivariant Networks: A Theory of Generalization on Dynamics Forecasting (2206.09450v1)

Published 19 Jun 2022 in cs.LG

Abstract: Exploiting symmetry in dynamical systems is a powerful way to improve the generalization of deep learning. The model learns to be invariant to transformation and hence is more robust to distribution shift. Data augmentation and equivariant networks are two major approaches to injecting symmetry into learning. However, their exact role in improving generalization is not well understood. In this work, we derive the generalization bounds for data augmentation and equivariant networks, characterizing their effect on learning in a unified framework. Unlike most prior theories for the i.i.d. setting, we focus on non-stationary dynamics forecasting with complex temporal dependencies.

Citations (13)

Summary

We haven't generated a summary for this paper yet.