Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation for Delay Alignment Modulation (2206.09339v2)

Published 19 Jun 2022 in cs.IT, eess.SP, and math.IT

Abstract: Delay alignment modulation (DAM) is a promising technology for inter-symbol interference (ISI)-free communication without relying on sophisticated channel equalization or multi-carrier transmissions. The key ideas of DAM are delay precompensation and path-based beamforming, so that the multi-path signal components will arrive at the receiver simultaneously and constructively, rather than causing the detrimental ISI. However, the practical implementation of DAM requires channel state information (CSI) at the transmitter side. Therefore, in this letter, we study an efficient channel estimation method for DAM based on block orthogonal matching pursuit (BOMP) algorithm, by exploiting the block sparsity of the channel vector. Based on the imperfectly estimated CSI, the delay pre-compensations and tap-based beamforming are designed for DAM, and the resulting performance is studied. Simulation results demonstrate that with the BOMP-based channel estimation method, the CSI can be effectively acquired with low training overhead, and the performance of DAM based on estimated CSI is comparable to the ideal case with perfect CSI.

Citations (14)

Summary

We haven't generated a summary for this paper yet.