Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can Language Models Capture Graph Semantics? From Graphs to Language Model and Vice-Versa (2206.09259v1)

Published 18 Jun 2022 in cs.CL

Abstract: Knowledge Graphs are a great resource to capture semantic knowledge in terms of entities and relationships between the entities. However, current deep learning models takes as input distributed representations or vectors. Thus, the graph is compressed in a vectorized representation. We conduct a study to examine if the deep learning model can compress a graph and then output the same graph with most of the semantics intact. Our experiments show that Transformer models are not able to express the full semantics of the input knowledge graph. We find that this is due to the disparity between the directed, relationship and type based information contained in a Knowledge Graph and the fully connected token-token undirected graphical interpretation of the Transformer Attention matrix.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube