Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Embedding Aggregation for Federated Representation Learning (2206.09097v2)

Published 18 Jun 2022 in cs.LG, cs.CR, cs.IT, and math.IT

Abstract: We consider a federated representation learning framework, where with the assistance of a central server, a group of $N$ distributed clients train collaboratively over their private data, for the representations (or embeddings) of a set of entities (e.g., users in a social network). Under this framework, for the key step of aggregating local embeddings trained privately at the clients, we develop a secure embedding aggregation protocol named \scheme, which leverages all potential aggregation opportunities among all the clients, while providing privacy guarantees for the set of local entities and corresponding embeddings \emph{simultaneously} at each client, against a curious server and up to $T < N/2$ colluding clients.

Summary

We haven't generated a summary for this paper yet.