Papers
Topics
Authors
Recent
Search
2000 character limit reached

COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive Learning

Published 9 Jun 2022 in cs.LG and cs.AI | (2206.04726v2)

Abstract: Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA on various downstream tasks. The graph augmentation step is a vital but scarcely studied step of GCL. In this paper, we show that the node embedding obtained via the graph augmentations is highly biased, somewhat limiting contrastive models from learning discriminative features for downstream tasks. Thus, instead of investigating graph augmentation in the input space, we alternatively propose to perform augmentations on the hidden features (feature augmentation). Inspired by so-called matrix sketching, we propose COSTA, a novel COvariance-preServing feaTure space Augmentation framework for GCL, which generates augmented features by maintaining a "good sketch" of original features. To highlight the superiority of feature augmentation with COSTA, we investigate a single-view setting (in addition to multi-view one) which conserves memory and computations. We show that the feature augmentation with COSTA achieves comparable/better results than graph augmentation based models.

Citations (82)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.