Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Learner Independent Variables for Estimating Assessment Items Difficulty Level (2206.04416v1)

Published 9 Jun 2022 in cs.CY

Abstract: The quality of assessment determines the quality of learning, and is characterized by validity, reliability and difficulty. Mastery of learning is generally represented by the difficulty levels of assessment items. A very large number of variables are identified in the literature to measure the difficulty level. These variables, which are not completely independent of one another, are categorized into learner dependent, learner independent, generic, non-generic and score based. This research proposes a model for predicting the difficulty level of assessment items in engineering courses using learner independent and generic variables. An ordinal regression model is developed for predicting the difficulty level, and uses six variables including three stimuli variables (item presentation, usage of technical notations and number of resources), two content related variables (number of concepts and procedures) and one task variable (number of conditions). Experimental results from three engineering courses provide around 80% accuracy in classification of items using the proposed model.

Summary

We haven't generated a summary for this paper yet.