Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auxiliary Task Guided Interactive Attention Model for Question Difficulty Prediction (2207.01494v1)

Published 24 May 2022 in cs.CY and cs.CL

Abstract: Online learning platforms conduct exams to evaluate the learners in a monotonous way, where the questions in the database may be classified into Bloom's Taxonomy as varying levels in complexity from basic knowledge to advanced evaluation. The questions asked in these exams to all learners are very much static. It becomes important to ask new questions with different difficulty levels to each learner to provide a personalized learning experience. In this paper, we propose a multi-task method with an interactive attention mechanism, Qdiff, for jointly predicting Bloom's Taxonomy and difficulty levels of academic questions. We model the interaction between the predicted bloom taxonomy representations and the input representations using an attention mechanism to aid in difficulty prediction. The proposed learning method would help learn representations that capture the relationship between Bloom's taxonomy and difficulty labels. The proposed multi-task method learns a good input representation by leveraging the relationship between the related tasks and can be used in similar settings where the tasks are related. The results demonstrate that the proposed method performs better than training only on difficulty prediction. However, Bloom's labels may not always be given for some datasets. Hence we soft label another dataset with a model fine-tuned to predict Bloom's labels to demonstrate the applicability of our method to datasets with only difficulty labels.

Summary

We haven't generated a summary for this paper yet.