Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contributor-Aware Defenses Against Adversarial Backdoor Attacks (2206.03583v1)

Published 28 May 2022 in cs.CR, cs.AI, cs.CV, and cs.LG

Abstract: Deep neural networks for image classification are well-known to be vulnerable to adversarial attacks. One such attack that has garnered recent attention is the adversarial backdoor attack, which has demonstrated the capability to perform targeted misclassification of specific examples. In particular, backdoor attacks attempt to force a model to learn spurious relations between backdoor trigger patterns and false labels. In response to this threat, numerous defensive measures have been proposed; however, defenses against backdoor attacks focus on backdoor pattern detection, which may be unreliable against novel or unexpected types of backdoor pattern designs. We introduce a novel re-contextualization of the adversarial setting, where the presence of an adversary implicitly admits the existence of multiple database contributors. Then, under the mild assumption of contributor awareness, it becomes possible to exploit this knowledge to defend against backdoor attacks by destroying the false label associations. We propose a contributor-aware universal defensive framework for learning in the presence of multiple, potentially adversarial data sources that utilizes semi-supervised ensembles and learning from crowds to filter the false labels produced by adversarial triggers. Importantly, this defensive strategy is agnostic to backdoor pattern design, as it functions without needing -- or even attempting -- to perform either adversary identification or backdoor pattern detection during either training or inference. Our empirical studies demonstrate the robustness of the proposed framework against adversarial backdoor attacks from multiple simultaneous adversaries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Glenn Dawson (5 papers)
  2. Muhammad Umer (24 papers)
  3. Robi Polikar (9 papers)

Summary

We haven't generated a summary for this paper yet.