Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logical Reasoning with Span-Level Predictions for Interpretable and Robust NLI Models (2205.11432v3)

Published 23 May 2022 in cs.CL and cs.LG

Abstract: Current Natural Language Inference (NLI) models achieve impressive results, sometimes outperforming humans when evaluating on in-distribution test sets. However, as these models are known to learn from annotation artefacts and dataset biases, it is unclear to what extent the models are learning the task of NLI instead of learning from shallow heuristics in their training data. We address this issue by introducing a logical reasoning framework for NLI, creating highly transparent model decisions that are based on logical rules. Unlike prior work, we show that improved interpretability can be achieved without decreasing the predictive accuracy. We almost fully retain performance on SNLI, while also identifying the exact hypothesis spans that are responsible for each model prediction. Using the e-SNLI human explanations, we verify that our model makes sensible decisions at a span level, despite not using any span labels during training. We can further improve model performance and span-level decisions by using the e-SNLI explanations during training. Finally, our model is more robust in a reduced data setting. When training with only 1,000 examples, out-of-distribution performance improves on the MNLI matched and mismatched validation sets by 13% and 16% relative to the baseline. Training with fewer observations yields further improvements, both in-distribution and out-of-distribution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Joe Stacey (7 papers)
  2. Pasquale Minervini (88 papers)
  3. Haim Dubossarsky (15 papers)
  4. Marek Rei (52 papers)
Citations (11)