Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When does Parameter-Efficient Transfer Learning Work for Machine Translation? (2205.11277v2)

Published 23 May 2022 in cs.CL

Abstract: Parameter-efficient fine-tuning methods (PEFTs) offer the promise of adapting large pre-trained models while only tuning a small number of parameters. They have been shown to be competitive with full model fine-tuning for many downstream tasks. However, prior work indicates that PEFTs may not work as well for machine translation (MT), and there is no comprehensive study showing when PEFTs work for MT. We conduct a comprehensive empirical study of PEFTs for MT, considering (1) various parameter budgets, (2) a diverse set of language-pairs, and (3) different pre-trained models. We find that 'adapters', in which small feed-forward networks are added after every layer, are indeed on par with full model fine-tuning when the parameter budget corresponds to 10% of total model parameters. Nevertheless, as the number of tuned parameters decreases, the performance of PEFTs decreases. The magnitude of this decrease depends on the language pair, with PEFTs particularly struggling for distantly related language-pairs. We find that using PEFTs with a larger pre-trained model outperforms full fine-tuning with a smaller model, and for smaller training data sizes, PEFTs outperform full fine-tuning for the same pre-trained model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ahmet Üstün (38 papers)
  2. Asa Cooper Stickland (15 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.