Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation (2205.11047v1)

Published 23 May 2022 in cs.CV and cs.RO

Abstract: We propose a single-stage, category-level 6-DoF pose estimation algorithm that simultaneously detects and tracks instances of objects within a known category. Our method takes as input the previous and current frame from a monocular RGB video, as well as predictions from the previous frame, to predict the bounding cuboid and 6-DoF pose (up to scale). Internally, a deep network predicts distributions over object keypoints (vertices of the bounding cuboid) in image coordinates, after which a novel probabilistic filtering process integrates across estimates before computing the final pose using PnP. Our framework allows the system to take previous uncertainties into consideration when predicting the current frame, resulting in predictions that are more accurate and stable than single frame methods. Extensive experiments show that our method outperforms existing approaches on the challenging Objectron benchmark of annotated object videos. We also demonstrate the usability of our work in an augmented reality setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yunzhi Lin (14 papers)
  2. Jonathan Tremblay (43 papers)
  3. Stephen Tyree (29 papers)
  4. Patricio A. Vela (41 papers)
  5. Stan Birchfield (64 papers)
Citations (23)