Papers
Topics
Authors
Recent
2000 character limit reached

A necessary and sufficient condition for the existence of $\{p,p+1,q-1,q\}$-orientations in simple graphs (2205.10883v1)

Published 22 May 2022 in math.CO

Abstract: Let $G$ be a simple graph and let $p$ and $q$ be two integer-valued functions on $V(G)$ with $p< q$ in which for each $v\in V(G)$, $q(v) \ge \frac{1}{2}d_G(v)$ and $p(v) \ge \frac{1}{2} q(v)-2$. In this note, we show that $G$ has an orientation such that for each vertex $v$, $d+_G(v)\in{p(v),p(v)+1,q(v)-1,q(v)}$ if and only if it has an orientation such that for each vertex $v$, $p(v) \le d+_G(v)\le q(v)$ where $d+_G(v)$ denotes the out-degree of $v$ in $G$. From this result, we refine a result due to Addario-Berry, Dalal, and Reed (2008) in bipartite simple graphs on the existence of degree constrained factors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.