Papers
Topics
Authors
Recent
2000 character limit reached

The existence of $\{p,q\}$-orientations in edge-connected graphs (2205.09038v1)

Published 18 May 2022 in math.CO

Abstract: In 1976 Frank and Gy{\'a}rf{\'a}s gave a necessary and sufficient condition for the existence of an orientation in an arbitrary graph $G$ such that for each vertex $v$, the out-degree $d+_G(v)$ of it satisfies $p(v)\le d+_G(v)\le q(v)$, where $p$ and $q$ are two integer-valued functions on $V(G)$ with $p\le q$. In this paper, we give a sufficient edge-connectivity condition for the existence of an orientation in $G$ such that for each vertex $v$, $d+_G(v)\in {p(v),q(v)}$, provided that for each vertex $v$, $p(v)\le \frac{1}{2}d_G(v) \le q(v)$, $|q(v)-p(v)|\le k$, and there is $t(v)\in {p(v),q(v)}$ in which $|E(G)|=\sum_{v\in V(G)}t(v)$. This result is a generalization of a theorem due to Thomassen (2012) on the existence of modulo orientations in highly edge-connected graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.