Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Post-breach Recovery: Protection against White-box Adversarial Examples for Leaked DNN Models (2205.10686v2)

Published 21 May 2022 in cs.CR

Abstract: Server breaches are an unfortunate reality on today's Internet. In the context of deep neural network (DNN) models, they are particularly harmful, because a leaked model gives an attacker "white-box" access to generate adversarial examples, a threat model that has no practical robust defenses. For practitioners who have invested years and millions into proprietary DNNs, e.g. medical imaging, this seems like an inevitable disaster looming on the horizon. In this paper, we consider the problem of post-breach recovery for DNN models. We propose Neo, a new system that creates new versions of leaked models, alongside an inference time filter that detects and removes adversarial examples generated on previously leaked models. The classification surfaces of different model versions are slightly offset (by introducing hidden distributions), and Neo detects the overfitting of attacks to the leaked model used in its generation. We show that across a variety of tasks and attack methods, Neo is able to filter out attacks from leaked models with very high accuracy, and provides strong protection (7--10 recoveries) against attackers who repeatedly breach the server. Neo performs well against a variety of strong adaptive attacks, dropping slightly in # of breaches recoverable, and demonstrates potential as a complement to DNN defenses in the wild.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.