Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KGNN: Distributed Framework for Graph Neural Knowledge Representation (2205.08285v1)

Published 17 May 2022 in cs.LG and cs.AI

Abstract: Knowledge representation learning has been commonly adopted to incorporate knowledge graph (KG) into various online services. Although existing knowledge representation learning methods have achieved considerable performance improvement, they ignore high-order structure and abundant attribute information, resulting unsatisfactory performance on semantics-rich KGs. Moreover, they fail to make prediction in an inductive manner and cannot scale to large industrial graphs. To address these issues, we develop a novel framework called KGNN to take full advantage of knowledge data for representation learning in the distributed learning system. KGNN is equipped with GNN based encoder and knowledge aware decoder, which aim to jointly explore high-order structure and attribute information together in a fine-grained fashion and preserve the relation patterns in KGs, respectively. Extensive experiments on three datasets for link prediction and triplet classification task demonstrate the effectiveness and scalability of KGNN framework.

Citations (3)

Summary

We haven't generated a summary for this paper yet.