Generalization Bounds on Multi-Kernel Learning with Mixed Datasets (2205.07313v2)
Abstract: This paper presents novel generalization bounds for the multi-kernel learning problem. Motivated by applications in sensor networks and spatial-temporal models, we assume that the dataset is mixed where each sample is taken from a finite pool of Markov chains. Our bounds for learning kernels admit $O(\sqrt{\log m})$ dependency on the number of base kernels and $O(1/\sqrt{n})$ dependency on the number of training samples. However, some $O(1/\sqrt{n})$ terms are added to compensate for the dependency among samples compared with existing generalization bounds for multi-kernel learning with i.i.d. datasets.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.