Weak Supervision with Incremental Source Accuracy Estimation (2205.05302v1)
Abstract: Motivated by the desire to generate labels for real-time data we develop a method to estimate the dependency structure and accuracy of weak supervision sources incrementally. Our method first estimates the dependency structure associated with the supervision sources and then uses this to iteratively update the estimated source accuracies as new data is received. Using both off-the-shelf classification models trained using publicly-available datasets and heuristic functions as supervision sources we show that our method generates probabilistic labels with an accuracy matching that of existing off-line methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.