Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Highest weight categories of $\mathfrak{gl}(\infty)$-modules (2205.04874v1)

Published 10 May 2022 in math.RT

Abstract: We study a category of modules over $\mathfrak{gl}(\infty)$ analogous to category $\mathcal O$. We fix adequate Cartan, Borel and Levi-type subalgebras $\mathfrak h, \mathfrak b$ and $\mathfrak l$ with $\mathfrak l \cong \mathfrak{gl}(\infty)n$, and define $\mathcal O_{\mathsf{LA}}{\mathfrak l}{\mathfrak{gl}(\infty)}$ to be the category of $\mathfrak h$-semisimple, $\mathfrak n$-nilpotent modules that satisfy a large annihilator condition as $\mathfrak l$-modules. Our main result is that these are highest weight categories in the sense of Cline, Parshall and Scott. We compute the simple multiplicities of standard objects and the standard multiplicities in injective objects, and show that a form of BGG reciprocity holds in $\mathcal O_{\mathsf{LA}}{\mathfrak l}{\mathfrak{gl}(\infty)}$. We also give a decomposition of $\mathcal O_{\mathsf{LA}}{\mathfrak l}{\mathfrak{gl}(\infty)}$ into irreducible blocks.

Summary

We haven't generated a summary for this paper yet.