Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Change-Point Detection in Functional Means (2205.04299v4)

Published 9 May 2022 in stat.ME

Abstract: A new dimension reduction methodology for change-point detection in functional means is developed in this paper. The major advantage and novelty of the proposed method is its efficiency in selecting basis functions that capture the change, or jump, of functional means, leading to higher detection power, especially when the functions cannot be sufficiently explained by a small number of basis functions or are contaminated by random noises. The throughly developed theoretical results demonstrate that, even when the change shrinks to zero, the proposed approach can still detect the change asymptotically almost surely. The numerical simulation studies justify the superiority of the proposed approach to the method based on functional principal components and the fully functional approach without dimension reduction. An application to annual humidity trajectories was also included to illustrate the practical superiority of the developed approach.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.