Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain-Level Detection and Disruption of Disinformation

Published 6 May 2022 in cs.CY | (2205.03338v1)

Abstract: How, in 20 short years, did we go from the promise of the internet to democratize access to knowledge and make the world more understanding and enlightened, to the litany of daily horrors that is today's internet? We are awash in disinformation consisting of lies, conspiracies, and general nonsense, all with real-world implications ranging from horrific humans rights violations to threats to our democracy and global public health. Although the internet is vast, the peddlers of disinformation appear to be more localized. To this end, we describe a domain-level analysis for predicting if a domain is complicit in distributing or amplifying disinformation. This process analyzes the underlying domain content and the hyperlinking connectivity between domains to predict if a domain is peddling in disinformation. These basic insights extend to an analysis of disinformation on Telegram and Twitter. From these insights, we propose that search engines and social-media recommendation algorithms can systematically discover and demote the worst disinformation offenders, returning some trust and sanity to our online communities.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.