Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Freq-LDPy: Multiple Frequency Estimation Under Local Differential Privacy in Python (2205.02648v2)

Published 5 May 2022 in cs.CR

Abstract: This paper introduces the multi-freq-ldpy Python package for multiple frequency estimation under Local Differential Privacy (LDP) guarantees. LDP is a gold standard for achieving local privacy with several real-world implementations by big tech companies such as Google, Apple, and Microsoft. The primary application of LDP is frequency (or histogram) estimation, in which the aggregator estimates the number of times each value has been reported. The presented package provides an easy-to-use and fast implementation of state-of-the-art solutions and LDP protocols for frequency estimation of: single attribute (i.e., the building blocks), multiple attributes (i.e., multidimensional data), multiple collections (i.e., longitudinal data), and both multiple attributes/collections. Multi-freq-ldpy is built on the well-established Numpy package -- a de facto standard for scientific computing in Python -- and the Numba package for fast execution. These features are described and illustrated in this paper with four worked examples. This package is open-source and publicly available under an MIT license via GitHub (https://github.com/hharcolezi/multi-freq-ldpy) and can be installed via PyPI (https://pypi.org/project/multi-freq-ldpy/).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com