Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moment-based Invariants for Probabilistic Loops with Non-polynomial Assignments (2205.02577v3)

Published 5 May 2022 in stat.AP and cs.SC

Abstract: We present a method to automatically approximate moment-based invariants of probabilistic programs with non-polynomial updates of continuous state variables to accommodate more complex dynamics. Our approach leverages polynomial chaos expansion to approximate non-linear functional updates as sums of orthogonal polynomials. We exploit this result to automatically estimate state-variable moments of all orders in Prob-solvable loops with non-polynomial updates. We showcase the accuracy of our estimation approach in several examples, such as the turning vehicle model and the Taylor rule in monetary policy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.