Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collision Resolution with Deep Reinforcement Learning for Random Access in Machine-Type Communication (2205.01977v1)

Published 4 May 2022 in cs.IT and math.IT

Abstract: Grant-free random access (RA) techniques are suitable for machine-type communication (MTC) networks but they need to be adaptive to the MTC traffic, which is different from the human-type communication. Conventional RA protocols such as exponential backoff (EB) schemes for slotted-ALOHA suffer from a high number of collisions and they are not directly applicable to the MTC traffic models. In this work, we propose to use multi-agent deep Q-network (DQN) with parameter sharing to find a single policy applied to all machine-type devices (MTDs) in the network to resolve collisions. Moreover, we consider binary broadcast feedback common to all devices to reduce signalling overhead. We compare the performance of our proposed DQN-RA scheme with EB schemes for up to 500 MTDs and show that the proposed scheme outperforms EB policies and provides a better balance between throughput, delay and collision rate

Citations (5)

Summary

We haven't generated a summary for this paper yet.