Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep learning of quantum entanglement from incomplete measurements (2205.01462v6)

Published 3 May 2022 in quant-ph and cs.LG

Abstract: The quantification of the entanglement present in a physical system is of para-mount importance for fundamental research and many cutting-edge applications. Currently, achieving this goal requires either a priori knowledge on the system or very demanding experimental procedures such as full state tomography or collective measurements. Here, we demonstrate that by employing neural networks we can quantify the degree of entanglement without needing to know the full description of the quantum state. Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements. Despite using undersampled measurements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art quantum tomography. Furthermore, we achieve this result employing networks trained using exclusively simulated data. Finally, we derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.

Citations (19)

Summary

We haven't generated a summary for this paper yet.