Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Subset Selection by Greedy and Evolutionary Pareto Optimization (2205.01415v2)

Published 3 May 2022 in cs.NE and cs.CC

Abstract: Subset selection, which aims to select a subset from a ground set to maximize some objective function, arises in various applications such as influence maximization and sensor placement. In real-world scenarios, however, one often needs to find a subset which is robust against (i.e., is good over) a number of possible objective functions due to uncertainty, resulting in the problem of robust subset selection. This paper considers robust subset selection with monotone objective functions, relaxing the submodular property required by previous studies. We first show that the greedy algorithm can obtain an approximation ratio of $1-e{-\beta\gamma}$, where $\beta$ and $\gamma$ are the correlation and submodularity ratios of the objective functions, respectively; and then propose EPORSS, an evolutionary Pareto optimization algorithm that can utilize more time to find better subsets. We prove that EPORSS can also be theoretically grounded, achieving a similar approximation guarantee to the greedy algorithm. In addition, we derive the lower bound of $\beta$ for the application of robust influence maximization, and further conduct experiments to validate the performance of the greedy algorithm and EPORSS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chao Bian (21 papers)
  2. Yawen Zhou (3 papers)
  3. Chao Qian (90 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.