Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Implicit Length Bias of Label Smoothing on Beam Search Decoding (2205.00659v1)

Published 2 May 2022 in cs.CL

Abstract: Label smoothing is ubiquitously applied in Neural Machine Translation (NMT) training. While label smoothing offers a desired regularization effect during model training, in this paper we demonstrate that it nevertheless introduces length biases in the beam search decoding procedure. Our analysis shows that label smoothing implicitly applies a length penalty term to output sequence, causing a bias towards shorter translations. We also show that for a model fully optimized with label smoothing, translation length is implicitly upper bounded by a fixed constant independent of input. We verify our theory by applying a simple rectification function at inference time to restore the unbiased distributions from the label-smoothed model predictions. This rectification method led to consistent quality improvements on WMT English-German, English-French, English-Czech and English-Chinese tasks, up to +0.3 BLEU at beam size 4 and +2.8 BLEU at beam size 200.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bowen Liang (5 papers)
  2. Pidong Wang (10 papers)
  3. Yuan Cao (201 papers)
Citations (1)