Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Budgeted Classification with Rejection: An Evolutionary Method with Multiple Objectives (2205.00570v2)

Published 1 May 2022 in cs.NE

Abstract: Classification systems are often deployed in resource-constrained settings where labels must be assigned to inputs on a budget of time, memory, etc. Budgeted, sequential classifiers (BSCs) address these scenarios by processing inputs through a sequence of partial feature acquisition and evaluation steps with early-exit options. This allows for an efficient evaluation of inputs that prevents unneeded feature acquisition. To approximate an intractable combinatorial problem, current approaches to budgeted classification rely on well-behaved loss functions that account for two primary objectives (processing cost and error). These approaches offer improved efficiency over traditional classifiers but are limited by analytic constraints in formulation and do not manage additional performance objectives. Notably, such methods do not explicitly account for an important aspect of real-time detection systems -- the fraction of "accepted" predictions satisfying a confidence criterion imposed by a risk-averse monitor. We propose a problem-specific genetic algorithm to build budgeted, sequential classifiers with confidence-based reject options. Three objectives -- accuracy, processing time/cost, and coverage -- are considered. The algorithm emphasizes Pareto efficiency while accounting for a notion of aggregate performance via a unique scalarization. Experiments show our method can quickly find globally Pareto optimal solutions in very large search spaces and is competitive with existing approaches while offering advantages for selective, budgeted deployment scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.