Papers
Topics
Authors
Recent
2000 character limit reached

Gradient Regularized Budgeted Boosting

Published 13 Jan 2019 in cs.LG and stat.ML | (1901.04065v3)

Abstract: As machine learning transitions increasingly towards real world applications controlling the test-time cost of algorithms becomes more and more crucial. Recent work, such as the Greedy Miser and Speedboost, incorporate test-time budget constraints into the training procedure and learn classifiers that provably stay within budget (in expectation). However, so far, these algorithms are limited to the supervised learning scenario where sufficient amounts of labeled data are available. In this paper we investigate the common scenario where labeled data is scarce but unlabeled data is available in abundance. We propose an algorithm that leverages the unlabeled data (through Laplace smoothing) and learns classifiers with budget constraints. Our model, based on gradient boosted regression trees (GBRT), is, to our knowledge, the first algorithm for semi-supervised budgeted learning.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.