Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible skyline: overview and applicability (2205.00285v1)

Published 30 Apr 2022 in cs.DB

Abstract: Ranking (or top-k) and skyline queries are the most popular approaches used to extract interesting data from large datasets. The first one is based on a scoring function to evaluate and rank tuples. Its computation is fast, but it is sensitive to the choice of the evaluating function. Skyline queries are based on the idea of dominance and the result is the set of all non-dominated tuples. This is a very interesting approach, but it can't allow to control the cardinality of the output. Recent researches discovered more techniques to compensate for these drawbacks. In particular, this paper will focus on the flexible skyline approach.

Summary

We haven't generated a summary for this paper yet.