Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Theoretic Reduction of Markov Chains (2204.13896v1)

Published 29 Apr 2022 in cs.IT, math.IT, and math.PR

Abstract: We survey information-theoretic approaches to the reduction of Markov chains. Our survey is structured in two parts: The first part considers Markov chain coarse graining, which focuses on projecting the Markov chain to a process on a smaller state space that is informative}about certain quantities of interest. The second part considers Markov chain model reduction, which focuses on replacing the original Markov model by a simplified one that yields similar behavior as the original Markov model. We discuss the practical relevance of both approaches in the field of knowledge discovery and data mining by formulating problems of unsupervised machine learning as reduction problems of Markov chains. Finally, we briefly discuss the concept of lumpability, the phenomenon when a coarse graining yields a reduced Markov model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.