Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curriculum Learning for Dense Retrieval Distillation (2204.13679v1)

Published 28 Apr 2022 in cs.IR and cs.LG

Abstract: Recent work has shown that more effective dense retrieval models can be obtained by distilling ranking knowledge from an existing base re-ranking model. In this paper, we propose a generic curriculum learning based optimization framework called CL-DRD that controls the difficulty level of training data produced by the re-ranking (teacher) model. CL-DRD iteratively optimizes the dense retrieval (student) model by increasing the difficulty of the knowledge distillation data made available to it. In more detail, we initially provide the student model coarse-grained preference pairs between documents in the teacher's ranking and progressively move towards finer-grained pairwise document ordering requirements. In our experiments, we apply a simple implementation of the CL-DRD framework to enhance two state-of-the-art dense retrieval models. Experiments on three public passage retrieval datasets demonstrate the effectiveness of our proposed framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hansi Zeng (18 papers)
  2. Hamed Zamani (88 papers)
  3. Vishwa Vinay (16 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.