Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CATrans: Context and Affinity Transformer for Few-Shot Segmentation (2204.12817v1)

Published 27 Apr 2022 in cs.CV

Abstract: Few-shot segmentation (FSS) aims to segment novel categories given scarce annotated support images. The crux of FSS is how to aggregate dense correlations between support and query images for query segmentation while being robust to the large variations in appearance and context. To this end, previous Transformer-based methods explore global consensus either on context similarity or affinity map between support-query pairs. In this work, we effectively integrate the context and affinity information via the proposed novel Context and Affinity Transformer (CATrans) in a hierarchical architecture. Specifically, the Relation-guided Context Transformer (RCT) propagates context information from support to query images conditioned on more informative support features. Based on the observation that a huge feature distinction between support and query pairs brings barriers for context knowledge transfer, the Relation-guided Affinity Transformer (RAT) measures attention-aware affinity as auxiliary information for FSS, in which the self-affinity is responsible for more reliable cross-affinity. We conduct experiments to demonstrate the effectiveness of the proposed model, outperforming the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shan Zhang (84 papers)
  2. Tianyi Wu (41 papers)
  3. Sitong Wu (20 papers)
  4. Guodong Guo (75 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.