Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Practical Two-stage Ranking Framework for Cross-market Recommendation (2204.12682v1)

Published 27 Apr 2022 in cs.IR

Abstract: Cross-market recommendation aims to recommend products to users in a resource-scarce target market by leveraging user behaviors from similar rich-resource markets, which is crucial for E-commerce companies but receives less research attention. In this paper, we present our detailed solution adopted in the cross-market recommendation contest, i.e., WSDM CUP 2022. To better utilize collaborative signals and similarities between target and source markets, we carefully consider multiple features as well as stacking learning models consisting of deep graph recommendation models (Graph Neural Network, DeepWalk, etc.) and traditional recommendation models (ItemCF, UserCF, Swing, etc.). Furthermore, We adopt tree-based ensembling methods, e.g., LightGBM, which show superior performance in prediction task to generate final results. We conduct comprehensive experiments on the XMRec dataset, verifying the effectiveness of our model. The proposed solution of our team WSDM_Coggle_ is selected as the second place submission.

Citations (4)

Summary

We haven't generated a summary for this paper yet.