Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reinforcement Teaching (2204.11897v3)

Published 25 Apr 2022 in cs.LG

Abstract: Machine learning algorithms learn to solve a task, but are unable to improve their ability to learn. Meta-learning methods learn about machine learning algorithms and improve them so that they learn more quickly. However, existing meta-learning methods are either hand-crafted to improve one specific component of an algorithm or only work with differentiable algorithms. We develop a unifying meta-learning framework, called Reinforcement Teaching, to improve the learning process of \emph{any} algorithm. Under Reinforcement Teaching, a teaching policy is learned, through reinforcement, to improve a student's learning algorithm. To learn an effective teaching policy, we introduce the parametric-behavior embedder that learns a representation of the student's learnable parameters from its input/output behavior. We further use learning progress to shape the teacher's reward, allowing it to more quickly maximize the student's performance. To demonstrate the generality of Reinforcement Teaching, we conduct experiments in which a teacher learns to significantly improve both reinforcement and supervised learning algorithms. Reinforcement Teaching outperforms previous work using heuristic reward functions and state representations, as well as other parameter representations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.