Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Teaching to Learn: Sequential Teaching of Agents with Inner States (2009.06227v1)

Published 14 Sep 2020 in cs.LG, cs.MA, and stat.ML

Abstract: In sequential machine teaching, a teacher's objective is to provide the optimal sequence of inputs to sequential learners in order to guide them towards the best model. In this paper we extend this setting from current static one-data-set analyses to learners which change their learning algorithm or latent state to improve during learning, and to generalize to new datasets. We introduce a multi-agent formulation in which learners' inner state may change with the teaching interaction, which affects the learning performance in future tasks. In order to teach such learners, we propose an optimal control approach that takes the future performance of the learner after teaching into account. This provides tools for modelling learners having inner states, and machine teaching of meta-learning algorithms. Furthermore, we distinguish manipulative teaching, which can be done by effectively hiding data and also used for indoctrination, from more general education which aims to help the learner become better at generalization and learning in new datasets in the absence of a teacher.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pierre-Alexandre Murena (7 papers)
  2. Samuel Kaski (164 papers)
  3. Mustafa Mert Celikok (1 paper)

Summary

We haven't generated a summary for this paper yet.