Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Groupes de Brauer algébriques modulo les constants d'espaces homogènes et leurs compactifications (2204.10967v2)

Published 23 Apr 2022 in math.AG

Abstract: Let $X$ be a smooth, geometrically integral variety over a field $K$. Then the quotient of the "algebraic" Brauer group of $X$ by $\operatorname{Br} K$ injects into $\textrm{H}1(K,\textrm{Pic} \bar{X})$. We show that this inclusion is not always an isomorphism, even in the case where $X$ is a homogeneous space of a connected linear algebraic group over $K$. A similar result for the smooth compactifications of $X$ is also given. -- Soit $X$ une vari\'et\'e lisse, g\'eom\'etriquement int`egre sur un corps $K$. Alors le quotient du groupe Brauer "alg\'ebrique" de $X$ par $\operatorname{Br} K$ s'injecte dans $\textrm{H}1(K,\operatorname{Pic} \bar{X})$. Nous montrons que cette inclusion n'est pas toujours un isomorphisme m^eme dans le cas o`u $X$ est un espace homog`ene d'un groupe alg\'ebrique lin\'eaire connexe sur $K$. Un r\'esultat similaire pour les compactifications lisses de $X$ est aussi donn\'e.

Summary

We haven't generated a summary for this paper yet.