Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Parameterization and Constrains of Object Landmark Globally Consistent via SPD(3) Manifold and Improved Cost Functions (2204.10552v1)

Published 22 Apr 2022 in cs.RO

Abstract: Object-level SLAM introduces semantic meaningful and compact object landmarks that help both indoor robot applications and outdoor autonomous driving tasks. However, the back end of object-level SLAM suffers from singularity problems because existing methods parameterize object landmark separately by their scales and poses. Under that parameterization method, the same abstract object can be represented by rotating the object coordinate frame by 90 deg and swapping its length with width value, making the pose of the same object landmark not globally consistent. To avoid the singularity problem, we first introduce the symmetric positive-definite (SPD) matrix manifold as an improved object-level landmark representation and further improve the cost functions in the back end to make them compatible with the representation. Our method demonstrates a faster convergence rate and more robustness in simulation experiments. Experiments on real datasets also reveal that using the same front-end data, our strategy improves the mapping accuracy by 22% on average.

Citations (3)

Summary

We haven't generated a summary for this paper yet.