Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiqubit state learning with entangling quantum generative adversarial networks (2204.09689v2)

Published 20 Apr 2022 in quant-ph

Abstract: The increasing success of classical generative adversarial networks (GANs) has inspired several quantum versions of GANs. Fully quantum mechanical applications of such quantum GANs have been limited to one- and two-qubit systems. In this paper, we investigate the entangling quantum GAN (EQ-GAN) for multiqubit learning. We show that the EQ-GAN can learn a circuit more efficiently compared with a SWAP test. We also consider the EQ-GAN for learning eigenstates that are variational quantum eigensolver (VQE)-approximated, and find that it generates excellent overlap matrix elements when learning VQE states of small molecules. However, this does not directly translate into a good estimate of the energy due to a lack of phase estimation. Finally, we consider random state learning with the EQ-GAN for up to six qubits, using different two-qubit gates, and show that it is capable of learning completely random quantum states, something which could be useful in quantum state loading.

Summary

We haven't generated a summary for this paper yet.