Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatially-Preserving Flattening for Location-Aware Classification of Findings in Chest X-Rays (2204.09676v1)

Published 19 Apr 2022 in eess.IV, cs.AI, and cs.CV

Abstract: Chest X-rays have become the focus of vigorous deep learning research in recent years due to the availability of large labeled datasets. While classification of anomalous findings is now possible, ensuring that they are correctly localized still remains challenging, as this requires recognition of anomalies within anatomical regions. Existing deep learning networks for fine-grained anomaly classification learn location-specific findings using architectures where the location and spatial contiguity information is lost during the flattening step before classification. In this paper, we present a new spatially preserving deep learning network that preserves location and shape information through auto-encoding of feature maps during flattening. The feature maps, auto-encoder and classifier are then trained in an end-to-end fashion to enable location aware classification of findings in chest X-rays. Results are shown on a large multi-hospital chest X-ray dataset indicating a significant improvement in the quality of finding classification over state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.