Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TranS: Transition-based Knowledge Graph Embedding with Synthetic Relation Representation (2204.08401v2)

Published 18 Apr 2022 in cs.CL

Abstract: Knowledge graph embedding (KGE) aims to learn continuous vectors of relations and entities in knowledge graph. Recently, transition-based KGE methods have achieved promising performance, where the single relation vector learns to translate head entity to tail entity. However, this scoring pattern is not suitable for complex scenarios where the same entity pair has different relations. Previous models usually focus on the improvement of entity representation for 1-to-N, N-to-1 and N-to-N relations, but ignore the single relation vector. In this paper, we propose a novel transition-based method, TranS, for knowledge graph embedding. The single relation vector in traditional scoring patterns is replaced with synthetic relation representation, which can solve these issues effectively and efficiently. Experiments on a large knowledge graph dataset, ogbl-wikikg2, show that our model achieves state-of-the-art results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xuanyu Zhang (34 papers)
  2. Qing Yang (138 papers)
  3. Dongliang Xu (19 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.