Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Frame-Online Neural Speech Enhancement with Overlapped-Frame Prediction (2204.07566v2)

Published 15 Apr 2022 in cs.SD and eess.AS

Abstract: Frame-online speech enhancement systems in the short-time Fourier transform (STFT) domain usually have an algorithmic latency equal to the window size due to the use of overlap-add in the inverse STFT (iSTFT). This algorithmic latency allows the enhancement models to leverage future contextual information up to a length equal to the window size. However, this information is only partially leveraged by current frame-online systems. To fully exploit it, we propose an overlapped-frame prediction technique for deep learning based frame-online speech enhancement, where at each frame our deep neural network (DNN) predicts the current and several past frames that are necessary for overlap-add, instead of only predicting the current frame. In addition, we propose a loss function to account for the scale difference between predicted and oracle target signals. Experiments on a noisy-reverberant speech enhancement task show the effectiveness of the proposed algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhong-Qiu Wang (41 papers)
  2. Shinji Watanabe (416 papers)
Citations (4)