Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating few shot and Contrastive learning Methods for Code Clone Detection (2204.07501v3)

Published 15 Apr 2022 in cs.SE

Abstract: Context: Code Clone Detection (CCD) is a software engineering task that is used for plagiarism detection, code search, and code comprehension. Recently, deep learning-based models have achieved an F1 score (a metric used to assess classifiers) of $\sim$95\% on the CodeXGLUE benchmark. These models require many training data, mainly fine-tuned on Java or C++ datasets. However, no previous study evaluates the generalizability of these models where a limited amount of annotated data is available. Objective: The main objective of this research is to assess the ability of the CCD models as well as few shot learning algorithms for unseen programming problems and new languages (i.e., the model is not trained on these problems/languages). Method: We assess the generalizability of the state of the art models for CCD in few shot settings (i.e., only a few samples are available for fine-tuning) by setting three scenarios: i) unseen problems, ii) unseen languages, iii) combination of new languages and new problems. We choose three datasets of BigCloneBench, POJ-104, and CodeNet and Java, C++, and Ruby languages. Then, we employ Model Agnostic Meta-learning (MAML), where the model learns a meta-learner capable of extracting transferable knowledge from the train set; so that the model can be fine-tuned using a few samples. Finally, we combine contrastive learning with MAML to further study whether it can improve the results of MAML.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (5)

Summary

We haven't generated a summary for this paper yet.