Cross-Domain Deep Code Search with Meta Learning (2201.00150v6)
Abstract: Recently, pre-trained programming LLMs such as CodeBERT have demonstrated substantial gains in code search. Despite showing great performance, they rely on the availability of large amounts of parallel data to fine-tune the semantic mappings between queries and code. This restricts their practicality in domain-specific languages with relatively scarce and expensive data. In this paper, we propose CroCS, a novel approach for domain-specific code search. CroCS employs a transfer learning framework where an initial program representation model is pre-trained on a large corpus of common programming languages (such as Java and Python) and is further adapted to domain-specific languages such as SQL and Solidity. Unlike cross-language CodeBERT, which is directly fine-tuned in the target language, CroCS adapts a few-shot meta-learning algorithm called MAML to learn the good initialization of model parameters, which can be best reused in a domain-specific language. We evaluate the proposed approach on two domain-specific languages, namely, SQL and Solidity, with model transferred from two widely used languages (Python and Java). Experimental results show that CDCS significantly outperforms conventional pre-trained code models that are directly fine-tuned in domain-specific languages, and it is particularly effective for scarce data.
- Yitian Chai (1 paper)
- Hongyu Zhang (147 papers)
- Beijun Shen (14 papers)
- Xiaodong Gu (62 papers)