Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The training response law explains how deep neural networks learn (2204.07291v1)

Published 15 Apr 2022 in cond-mat.dis-nn and cs.LG

Abstract: Deep neural network is the widely applied technology in this decade. In spite of the fruitful applications, the mechanism behind that is still to be elucidated. We study the learning process with a very simple supervised learning encoding problem. As a result, we found a simple law, in the training response, which describes neural tangent kernel. The response consists of a power law like decay multiplied by a simple response kernel. We can construct a simple mean-field dynamical model with the law, which explains how the network learns. In the learning, the input space is split into sub-spaces along competition between the kernels. With the iterated splits and the aging, the network gets more complexity, but finally loses its plasticity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.