Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence and Implicit Regularization Properties of Gradient Descent for Deep Residual Networks (2204.07261v4)

Published 14 Apr 2022 in cs.LG and math.OC

Abstract: We prove linear convergence of gradient descent to a global optimum for the training of deep residual networks with constant layer width and smooth activation function. We show that if the trained weights, as a function of the layer index, admit a scaling limit as the depth increases, then the limit has finite $p-$variation with $p=2$. Proofs are based on non-asymptotic estimates for the loss function and for norms of the network weights along the gradient descent path. We illustrate the relevance of our theoretical results to practical settings using detailed numerical experiments on supervised learning problems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.