Papers
Topics
Authors
Recent
2000 character limit reached

Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

Published 13 Apr 2022 in cs.CR | (2204.06341v1)

Abstract: In CRYPTO'19, Gohr proposed a new cryptanalysis strategy using machine learning algorithms. Combining the differential-neural distinguisher with a differential path and integrating the advanced key recovery procedure, Gohr achieved a 12-round key recovery attack on Speck32/64. Chen and Yu improved prediction accuracy of differential-neural distinguisher considering derived features from multiple-ciphertext pairs instead of single-ciphertext pairs. By modifying the kernel size of initial convolutional layer to capture more dimensional information, the prediction accuracy of differential-neural distinguisher can be improved for for three reduced symmetric ciphers. For DES, we improve the prediction accuracy of (5-6)-round differential-neural distinguisher and train a new 7-round differential-neural distinguisher. For Chaskey, we improve the prediction accuracy of (3-4)-round differential-neural distinguisher. For PRESENT, we improve the prediction accuracy of (6-7)-round differential-neural distinguisher. The source codes are available in https://drive.google.com/drive/folders/1i0RciZlGZsEpCyW-wQAy7zzJeOLJNWqL?usp=sharing.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.