Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-critical Sequence Training for Automatic Speech Recognition (2204.06260v1)

Published 13 Apr 2022 in cs.CL, cs.SD, and eess.AS

Abstract: Although automatic speech recognition (ASR) task has gained remarkable success by sequence-to-sequence models, there are two main mismatches between its training and testing that might lead to performance degradation: 1) The typically used cross-entropy criterion aims to maximize log-likelihood of the training data, while the performance is evaluated by word error rate (WER), not log-likelihood; 2) The teacher-forcing method leads to the dependence on ground truth during training, which means that model has never been exposed to its own prediction before testing. In this paper, we propose an optimization method called self-critical sequence training (SCST) to make the training procedure much closer to the testing phase. As a reinforcement learning (RL) based method, SCST utilizes a customized reward function to associate the training criterion and WER. Furthermore, it removes the reliance on teacher-forcing and harmonizes the model with respect to its inference procedure. We conducted experiments on both clean and noisy speech datasets, and the results show that the proposed SCST respectively achieves 8.7% and 7.8% relative improvements over the baseline in terms of WER.

Citations (14)

Summary

We haven't generated a summary for this paper yet.